Follow‐up of an occult tuberculosis scar cancer after resection of metastatic lesions (2024)

  • Journal List
  • Thorac Cancer
  • v.11(8); 2020 Aug
  • PMC7396367

As a library, NLM provides access to scientific literature. Inclusion in an NLM database does not imply endorsem*nt of, or agreement with, the contents by NLM or the National Institutes of Health.
Learn more: PMC Disclaimer | PMC Copyright Notice

Follow‐up of an occult tuberculosis scar cancer after resection of metastatic lesions (1)

Link to Publisher's site

Thorac Cancer. 2020 Aug; 11(8): 2347–2350.

Published online 2020 Jun 22. doi:10.1111/1759-7714.13531

PMCID: PMC7396367

PMID: 32567174

Mengyao Sun,1, Yinghui Xu,1, Xu Wang,1 Chao Sun,1 Ye Guo,1 Guoguang Shao,2 Zhiguang Yang,2 Yunpeng Liu,2 Peng Zhang,2 Shi Qiu,1 and Kewei MaFollow‐up of an occult tuberculosis scar cancer after resection of metastatic lesions (2)1

Associated Data

Supplementary Materials

Abstract

A 61‐year‐old Chinese man with a history of tuberculosis was found to have a large mass in the left lower lobe and multiple ground‐glass nodules (GGNs) on lung computed tomography (CT). Post‐operative pathology showed lung squamous carcinoma in the left lower lobe and mediastinal lymph node metastases, which were confirmed as lung adenocarcinoma. Multiple gene sequencing was performed, and no relationship was observed between the two primary sites. Chemotherapy consisting of four cycles of gemcitabine plus cisplatin were prescribed for this patient after the operation. After a period of two‐year follow‐up, the lung adenocarcinoma was found to have progressed with new metastases in the right cervical lymph nodes which had the same pathology and gene mutation as the metastatic mediastinal lymph nodes removed two years previously. Meanwhile, a primary lesion was found following PET‐CT scan, and the tuberculosis scar was determined as its point of origin. In conclusion, we have found that a tuberculosis scar is a risk factor of lung cancer, especially adenocarcinoma, and more attention should be paid to close monitoring and follow‐up by clinicians.

Keywords: EGFR mutation, lung cancer of unknown primary (CUP), metastatic lymph nodes, tuberculosis scar cancer

Introduction

Lung cancer is a leading cause of cancer death and represents a major public health problem. Many factors have been reported to be associated with the formation of lung cancer, including smoking, gene mutation, and inflammation.1, 2 In addition, it has been proposed that a diagnosis of tuberculosis may subsequently increase the risk of lung cancer. The coexistence of tuberculosis and lung cancer is estimated to account for approximately 2%.3 Although the two rarely occur together, the possible linkage between tuberculosis and lung cancer development has been studied for several decades. It has been proposed that a tuberculosis scar is associated with an increased risk of lung cancer, as the scarring of the lung after tuberculosis might predispose an individual to lung cancer.4, 5, 6 A tumor which arises from a tuberculosis lesion is known as tuberculosis scar cancer. In this report, we describe a case of lung cancer which originated from a tuberculosis scar which had been found at long‐term follow‐up after resection of the metastatic lesions.

Case report

A large mass in the left lower lobe and multiple ground‐glass nodules (GGNs) were detected by chest computed tomography (CT) scan in a 61‐year‐old Chinese man. He had a history of smoking 40 packs per year and a medical history of pulmonary tuberculosis for more than 10 years that was cured after systemic treatment. No abnormal findings were detected on physical examination. Positron emission tomography‐computed tomography (PET‐CT) showed a cavity‐like hypermetabolic lesion (2.4 cm × 2.3 cm × 2.0 cm in diameter) in the left lower lobe, and the fifth group of mediastinal lymph nodes was enlarged (Fig ​(Fig1a),1a), suggesting peripheral lung cancer with lymph node metastasis. In addition, multiple GGNs were found in both lungs with undetermined characteristics. Tuberculosis in the upper lobes of both lungs was identified (Fig ​(Fig1b,1b, Fig S1a). No other distant metastases were detected based on other imaging data. A left lower lobe lobectomy and lymphadenectomy was performed in this patient. Postoperative pathology revealed a squamous cell carcinoma with no driver mutations in the left lower lobe. However, adenocarcinoma harbouring an EGFR gene exon 18 mutation (G719A/G719C) was confirmed in the mediastinal lymph nodes, indicating considerable genetic differences and a lack of correlation between the two lesions. We considered that the primary lesion of the metastatic mediastinal lymph nodes might be associated with the tuberculosis scar or GGNs, but no further imaging evidence was found. Therefore, the patient was officially diagnosed with left lung lobe lung cancer (squamous type, pT1cN0M0, stage IA) and mediastinal lymph node metastasis (adenocarcinoma type, pTxN2M0) and was treated with four cycles of chemotherapy (gemcitabine and cisplatin). The status of the case was evaluated as stable disease until July 2019; at this time, the right cervical lymph nodes were enlarged, and adenocarcinoma with EGFR gene exon 18 mutation (G719A/G719C) was confirmed by lymph node biopsy, with the same pathology and gene mutation as the metastatic mediastinal lymph nodes that had been removed two years previously. PET‐CT showed a high metabolic malignant mass (2.4 cm × 1.2 cm in diameter) originating from a pulmonary tuberculosis scar in the left upper lobe with multiple lymph node metastases (right neck, bilateral subclavian, left hilar, and mediastinum involved) (Fig. ​(Fig.1c,1c, Fig. S1b). No other metastases were observed. Afatinib was subsequently suggested for this patient.

Open in a separate window

Figure 1

(a) Preoperative chest computed tomography (CT) scan indicated a large mass in the left lower lobe and swollen fifth mediastinal lymph node group on 7 March 2018. (b) Preoperative chest CT showed tuberculosis in the left upper lobe on 7 March 2018. (c) Chest CT showed progressive disease on 5 August 2019.

Discussion

Here, we present a case which initially manifested with a difference in pathological types between the identified lesion of the lung and metastatic lymph nodes, suggesting there was heterogeneity between them. After two‐years of follow‐up, the origin of the metastatic mediastinal lymph nodes surfaced. It was the scaring area caused by tuberculosis that promoted lung cancer development. Lung cancer may develop in a scar. Lung scar cancer is characterized by a peripheral location and is more likely to be found in the upper lobes. The majority of scar cancers are adenocarcinoma with tumor sizes less than 3 cm in diameter and are found predominantly in the male population.7, 8, 9, 10, 11 These characteristics are consistent with that of the patient in our report. Lung scar cancer is rare, with a frequency of 7% in all lung cancer patients.7 However, a study in South Africa revealed that at least one in five lung cancer patients had radiological evidence of scarring, which might be related to South Africa having one of the highest incidences of tuberculosis.8, 12 A large‐scale study involving more than 40 000 Chinese patients showed increased lung cancer incidence in patients with tuberculosis.13 It has been well documented that tuberculosis played an important role in the formation of lung scar cancer and patients with a history of tuberculosis had shown a two‐fold increase in risk for the subsequent development of lung cancer.14, 15 It is because the inflammation caused by tuberculosis infection induces the activation of various cytokines, such as tumor necrosis factor (TNF), IL‐1, IL‐6 and many more as well as reactive oxygen species (ROS), which can bind to DNA, leading to genomic alterations. There is a high concentration of collagen III, collagen IV and myofibroblasts, which are characteristics of fibrosis in scars.16 Additionally, IL‐3, IL‐4, and TNF‐α, which are produced in high amounts in inflammation, play a key role in the formation of fibrosis.17 Chronic inflammation produces and fibrosis causes DNA damage, eventually leading to the activation of oncogenes. It is reported that pulmonary tuberculosis preceded lung cancer in median time of five years (range 2 to 25 years).6 In addition, both pulmonary tuberculosis and lung cancer have similar pulmonary manifestations that could mask lung cancers, such as cavitary lesions, miliary pattern, and pleural effusion.18, 19, 20, 21 Therefore, the diagnosis of lung cancer can be delayed in patients with a history of pulmonary tuberculosis. The recommendation is that newly diagnosed tuberculosis cases should be followed‐up periodically with chest X‐ray, bronchoscopy, and sputum cytology to screen for the early diagnosis of lung cancer.

The prognosis of lung scar cancer remains controversial. Both Bennett et al. and Hukill and Stern found that patients with scar cancers seemed to have a favorable prognosis (five of six patients and three of seven patients surviving five years, respectively).22 However, Freant et al. reported that the five‐year survival rate of lung scar cancer with surgery was only 5% at the time of resection.8 Such poor prognosis of lung scar cancer is due to early lymph node and vascular invasion. As in our case, metastatic lymph nodes were indentified two years prior to the primary lesion. A possible explanation illustrated by Carroll is that the scarring process blocks lymphatic drainage, and carcinogens accumulate within the scar, leading to more extensive vascular and lymphatic seeding.23 Freant et al. found that lymph node involvement was greater in the scar cancer group, which support the views of Bennett et al. and Hukill and Stern that vascular invasion seems to be of little prognostic value and lymph node metastasis is the most important prognostic feature in scar cancer. Early lymph node metastasis is likely to be unique for scar cancer. Therefore, clinicians should be highly alert to the possibility of scar cancer and close monitoring of the lesion condition is essential in patients with lymph node metastasis, especially for patients with a history of tuberculosis.

Factors affecting the prognosis of scar cancer are varied. Previous studies have reported that patients with lung adenocarcinoma who had scar cancer or a history of tuberculosis lesions had a higher probability of having EGFR mutations (56%–77%) and the prognosis of patients who had EGFR mutations was more favorable than those without mutations (one‐year survival rate, 84.6% vs. 35.4%).24, 25 However, compared to patients harboring an EGFR mutation without a history of tuberculosis, both the progression‐free survival (9.1 months vs. 11.6 months) and the overall survival (19.4 months vs. 24.5 months) after first‐line EGFR‐TKIs were reported to be significantly shorter in the patients with tuberculosis‐related lung adenocarcinoma.25 The patient in this case had lymph node metastases harboring a rare EGFR mutation (G719A/C) and afatinib had also been administered. and the prognosis should also be followed‐up.

In conclusion, patients with pulmonary tuberculosis scar have an increased risk of lung cancer. For these patients, more attention should be paid to close monitoring and follow‐up. Furthermore, more tuberculosis scar cancer samples are needed to enable further understanding of the biological behavior and potential new treatment.

Disclosure

The authors declare that they have no conflict of interests.

Supporting information

Supplementary Figure S1 (a) Sequential preoperative chest CTs shows tuberculosis in the left upper lobe. (b) Sequential chest CTs of malignant mass that originated from tuberculosis scar in the left upper lobe.

Click here for additional data file.(530K, jpg)

Acknowledgments

The authors wish to acknowledge the valuable contributions of specialists from the surgery, internal medicine, radiotherapy and imaging departments and thank the patient for his support and cooperation. Written informed consent was obtained from the patient for publication of this case report and any accompanying images.

References

1. de Groot P, Munden RF. Lung cancer epidemiology, risk factors, and prevention. Radiol Clin North Am2012; 50 (5): 863–76. [PubMed] [Google Scholar]

2. Warth A, Macher‐Goeppinger S, Muley Tet alClonality of multifocal nonsmall cell lung cancer: Implications for staging and therapy. Eur Respir J2012; 39 (6): 1437–42. [PubMed] [Google Scholar]

3. Ayman R, Glen H, Ahmad Aet alA case of tuberculosis and adenocarcinomacoexisting in the same lung lobe. Int J Mycobacteriol2016; 5: 80–2. [PubMed] [Google Scholar]

4. Cicenas S, Vencevicius V. Lung cancer in patients with tuberculosis. World J Surg Oncol2007; 5: 22. [PMC free article] [PubMed] [Google Scholar]

5. Wu CY, Hu HY, Pu CYet alPulmonary tuberculosis increases the risk of lung cancer: A population‐based cohort study. Cancer2011; 117 (3): 618–24. [PubMed] [Google Scholar]

6. Cukic V. The association between lung carcinoma and tuberculosis. Med Arch2017; 71 (3): 212–4. [PMC free article] [PubMed] [Google Scholar]

7. Auerbach O, Garfinkel L, Parks VR. Scar cancer of the lung: increase over a 21 year period. Cancer1979; 43 (2): 636–42. [PubMed] [Google Scholar]

8. Freant LJ, Joseph WL, Adkins PC. Scar carcinoma of the lung. Fact or fantasy?Ann Thorac Surg1974; 17 (6): 531–7. [PubMed] [Google Scholar]

9. Silva DR, Valentini DF Jr, Muller AM, de Almeida CP, Dalcin P d T. Pulmonary tuberculosis and lung cancer: simultaneous and sequential occurrence. J Bras Pneumol2013; 39 (4): 484–9. [PMC free article] [PubMed] [Google Scholar]

10. Yokoo H, Suckow EE. Peripheral lung cancers arising in scars. Cancer1961; 14: 1205–15. [PubMed] [Google Scholar]

11. Bennett DE, Sasser WF, Ferguson TB. Adenocarcinoma of the lung in men. A clinicopathologic study of 100 cases. Cancer1969; 23 (2): 431–9. [PubMed] [Google Scholar]

12. Jenkins N, Irusen EM, Koegelenberg CF. Pulmonary scar carcinoma in South Africa. S Afr Med J2017; 107 (4): 320–2. [PubMed] [Google Scholar]

13. Liang HY, Li XL, Yu XSet alFacts and fiction of the relationship between preexisting tuberculosisand lung cancer risk: A systematic review. Int J Cancer2009; 125 (12): 2936–44. [PubMed] [Google Scholar]

14. Bodegom PC, Wagenaar SS, Corrin B, Baak JP, Berkel J, Vanderschueren RG. Second primary lung cancer: importance of long term follow up. Thorax1989; 44 (10): 788–93. [PMC free article] [PubMed] [Google Scholar]

15. Pairolero PC, Williams DE, Bergstralh EJ, Piehler JM, Bernatz PE, Payne WS. Postsurgical stage I bronchogenic carcinoma: morbid implications of recurrent disease. Ann Thorac Surg1984; 38 (4): 331–8. [PubMed] [Google Scholar]

16. Madri JA, Carter D. Scar cancers of the lung: origin and significance. Hum Pathol1984; 15 (7): 625–31. [PubMed] [Google Scholar]

17. Dheda K, Booth H, Huggett JF, Johnson MA, Zumla A, Rook GA. Lung remodeling in pulmonary tuberculosis. J Infect Dis2005; 192 (7): 1201–9. [PubMed] [Google Scholar]

18. Liu Y, Wang Het alRadiologic features of small pulmonary nodules and lung cancer risk in the National Lung Screening Trial: A nested case‐control study. Radiology2018; 286: 298–306. [PMC free article] [PubMed] [Google Scholar]

19. Nachiappan AC, Rahbar K, Shi Xet alPulmonary tuberculosis: Role of radiology in diagnosis and management. Radiographics2017; 37: 52–72. [PubMed] [Google Scholar]

20. Light RW. Update on tuberculous pleural effusion. Respirology2010; 15: 451–8. [PubMed] [Google Scholar]

21. Light RW. Clinical practice. Pleural effusion. N Engl J Med2002; 346: 1971–7. [PubMed] [Google Scholar]

22. Hukill PB, Stern H.Adenocarcinoma of the lung‐histological factors affecting prognosis. A study of 38 patients with resection and 5‐year follow‐up. Cancer. 1962; 15: 504–14. [PubMed] [Google Scholar]

23. Carroll R. The influence of lung scars on primary lung cancer. J Pathol Bacteriol1962; 83: 293–7. [PubMed] [Google Scholar]

24. Luo YH, Wu CH, Wu WSet alAssociation between tumor epidermal growth factor receptor mutation and pulmonary tuberculosis in patients with adenocarcinoma of the lungs. J Thorac Oncol2012; 7 (2): 299–305. [PubMed] [Google Scholar]

25. Hwang K, Paik SS, Lee SH. Impact of pulmonary tuberculosis on the EGFR mutational status and clinical outcome in patients with lung adenocarcinoma. Cancer Res Treat2019; 51 (1): 158–68. [PMC free article] [PubMed] [Google Scholar]

Articles from Thoracic Cancer are provided here courtesy of Wiley-Blackwell

Follow‐up of an occult tuberculosis scar cancer after resection of metastatic lesions (2024)

FAQs

How do you get rid of old TB scars in the lungs? ›

It is not possible to removed healed calcified spot of tuberculosis by medicine. Surgery may be performed to remove that scar but it is not necessary. The old healed scar will not harm you.

How fast does metastatic lung cancer spread? ›

Does lung cancer spread quickly? Some NSCLC tumors may double in size within 3 weeks, while others may never grow too much. That said, the average doubling time for NSCLC is just over 7 months .

What is the prognosis for metastatic lung cancer? ›

For regional NSCLC, which means the cancer has spread outside of the lung to nearby lymph nodes, the 5-year relative survival rate is about 37%. When cancer has spread to distant parts of the body, called metastatic lung cancer, the 5-year relative survival rate is 9%.

What is aggressive lung cancer with metastases? ›

Metastatic lung cancer means that the cancer has spread from where it started in the lung. It is also called advanced lung cancer. Unfortunately advanced cancer can't usually be cured. But treatment might control it, help symptoms, and improve your quality of life for some time.

Is the scar on my lungs because of TB permanent? ›

TB scar cannot be treated. This scar will stay for lifetime.

Does scar tissue in lungs ever go away? ›

There is no cure for pulmonary fibrosis. Current treatments are aimed at preventing more lung scarring, relieving symptoms and helping you stay active and healthy. Your doctor may recommend medication, oxygen therapy, pulmonary rehabilitation, a lung transplant and/or lifestyle changes.

Has anyone ever beat metastatic lung cancer? ›

As far as we know, large, long-term studies in this stage IV NSCLC with at least 3 months survival are lacking. In the patients to be described in the current article, 10%–15% survived between 60 and 75 months. At 10 years follow-up, still 5% was alive with distant metastases.

Does metastatic lung cancer mean terminal? ›

Outlook (Prognosis)

A cure is unlikely in most cases of cancers that have spread to the lungs. But the outlook depends on the main cancer. In some cases, a person can live more than 5 years with metastatic cancer to the lungs.

Can you beat metastatic lung cancer? ›

Once non-small-cell lung cancer (NSCLC) spreads far and wide, treating it is kind of a balancing act. A cure isn't likely, but you can slow it down. So you aim to relieve your symptoms and improve your quality of life with as few side effects as possible.

Can you go into remission with metastatic lung cancer? ›

Remission is possible for lung cancer patients. Reduction in tumor growth must last one month minimum before doctors consider it in remission. Additionally, just because the patient has reached this point in their lung cancer timeline, doesn't mean they're cured or free of cancer.

How quickly do you deteriorate with lung cancer? ›

Studies have shown that lung cancer doubling time can vary, from 229 days to 647 days in one study, depending upon the type. 7 It's possible that some types of lung cancer progress within weeks to months, while others may take years to grow.

Can metastatic lung cancer be surgically removed? ›

For a patient with isolated metastatic disease to the lungs (i.e., with no metastases to other parts of the body), pulmonary metastasectomy (surgical removal of the lung tumors) is the best hope for cure.

What is the hardest lung cancer to treat? ›

Metastatic lung cancer is cancer that starts in one lung but spreads to the other lung or to other organs. Metastatic lung cancer is harder to treat than cancer that hasn't spread outside of its original location.

What are the signs that lung cancer is getting worse? ›

Other symptoms that may also occur with lung cancer, often in the late stages:
  • Bone pain or tenderness.
  • Eyelid drooping.
  • Facial paralysis.
  • Hoarseness or changing voice.
  • Joint pain.
  • Nail problems.
  • Shoulder pain.
  • Swallowing difficulty.

What organ does lung cancer spread to first? ›

Most lung cancers first spread to lymph nodes within the lung or around the major airways. 4 Lymph nodes are tiny organs clustered throughout the body that trap and filter foreign substances.

Can you regenerate scarred lungs? ›

While the body has some capacity for regeneration, damaged lung tissue doesn't typically regenerate on its own. This is where stem cell therapy comes in. Stem cells can replace damaged lung tissue, promoting regeneration and repair.

Is tuberculosis lung damage reversible? ›

It persists and increases with future TB episodes (Plit et al., 1998; Hnizdo et al., 2000), resulting in an irreversible decline in pulmonary lung function and structural damage to the lung parenchyma observed among post-TB individuals (Hnizdo et al., 2000).

Can lung damage from TB be cured? ›

Treatment of drug-susceptible pulmonary TB is highly effective, with 85% (66 million cases) of reported cases estimated to have been successfully treated between 1995 and 2015 [1]. However, up to half of TB survivors have some form of persistent pulmonary dysfunction despite microbiologic cure [2–5].

Can scarred lung tissue regenerate? ›

The lung's ability to regenerate extensively after injury suggests that this capability could be promoted in diseases in which loss of lung tissue occurs. However, understanding of the cell types involved and the underlying mechanisms that control the proper regeneration of lung tissue is in its infancy.

Top Articles
Latest Posts
Article information

Author: Fredrick Kertzmann

Last Updated:

Views: 6009

Rating: 4.6 / 5 (66 voted)

Reviews: 81% of readers found this page helpful

Author information

Name: Fredrick Kertzmann

Birthday: 2000-04-29

Address: Apt. 203 613 Huels Gateway, Ralphtown, LA 40204

Phone: +2135150832870

Job: Regional Design Producer

Hobby: Nordic skating, Lacemaking, Mountain biking, Rowing, Gardening, Water sports, role-playing games

Introduction: My name is Fredrick Kertzmann, I am a gleaming, encouraging, inexpensive, thankful, tender, quaint, precious person who loves writing and wants to share my knowledge and understanding with you.